QGP Brick: What to do next?

- Redesign comparison schemes
- ΔE Scheme:
 - Keep $\Delta E/E = \int dx \times P(x)$ fixed
 - Intuitive, but overemphasizes poorly controlled $x \rightarrow 1$ region

• R scheme:
$$R(p) = f(p)^{-1} \int dx dz f\left(\frac{p}{(1-x)z}\right) D(z) P(x) \longrightarrow \int dx \rho(x) P(x)$$

 $f(p) \sim p^{-n} \longrightarrow \rho(x) \sim (1-x)^n \int dz z^n D(z)$

- Strongly weights x→0 region
- Compare directly R_{AA} with correct hadronization

WHDG and AMY are directly comparable:

- \blacktriangleright Calculations can be done for same E, L,T, α_s . Compare the same observables in the same figure.
- Make sure that apples are compared with apples: gluon medium only, check whether groups agree on q-hat (i.e. λ and μ^2).

• WHDG and ASW are directly comparable:

- \blacktriangleright Calculations can be done for same E, L, α_s .
- \blacktriangleright Compare in ΔE and in R schemes, and after R_{AA} after fragmentation.
- \blacktriangleright Compare q-hat leading to same ΔE , R.
- ▶ Compare R for same q-hat.
- Explore, if x(1-x) kinematic constraint can be implemented in ASW.

HT, AMY and WHDG are comparable:

- \blacktriangleright Calculations can be done for same E, L, α_s , q-hat.
- ▶ Compare R_{AA} after fragmentation.
- Fix R_{AA} and compare q-hat for same E, L, α_s .

